skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Jara, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jara, C; Borras_Sol, J (Ed.)
    Deep Reinforcement Learning (DRL) has shown its capability to solve the high degrees of freedom in control and the complex interaction with the object in the multi-finger dexterous in-hand manipulation tasks. Current DRL approaches lack behavior constraints during the learning process, leading to aggressive and unstable policies that are insufficient for safety-critical in-hand manipulation tasks. The centralized learning strategy also limits the flexibility to fine-tune each robot finger's behavior. This work proposes the Finger-specific Multi-agent Shadow Critic Consensus (FMSC) method, which models the in-hand manipulation as a multi-agent collaboration task where each finger is an individual agent and trains the policies for the fingers to achieve a consensus across the critic networks through the Information Sharing (IS) across the neighboring agents and finger-specific stable manipulation objectives based on the state-action occupancy measure, a general utility of DRL that is approximated during the learning process. The methods are evaluated in two in-hand manipulation tasks on the Shadow Hand. The results show that FMSC+IS converges faster in training, achieving a comparable success rate and much better manipulation stability than conventional DRL methods. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026